Over the years, I collected implementations of an algorithm to solve the
subset sum problem
in various languages. A few days ago, I experimented a little with Python, and
here is the deplorably non-idiomatic and naïve result - apologies offered.
import random
import array
import sys
numbers = array.array('i')
flags = array.array('c')
solutions = 0
def find_solutions(k, target_sum):
global solutions
if target_sum == 0:
print " Solution:",
for i in range(0, len(numbers)):
if flags[i] != 0:
print numbers[i],
print
solutions = solutions + 1
else:
if k < len(numbers):
if (numbers[k] * (len(numbers)-k+1)) >= target_sum:
if target_sum >= numbers[k]:
flags[k] = 1
find_solutions(k+1, target_sum - numbers[k])
flags[k] = 0
find_solutions(k+1, target_sum)
def find_subset_sum(target_sum):
global solutions
global flags
print "Subsets which sum up to %s:" % target_sum
flags = [0] * len(numbers)
find_solutions(0, target_sum)
print "Found", solutions, "different solutions"
def subset_sum_test(size):
global numbers
total = 0
print "Random values:\n ",
for i in range(0, size):
numbers.append(random.randint(0, 1000))
total = total + numbers[i]
print numbers[i],
print
numbers = sorted(numbers, reverse = True)
target_sum = total/2
find_subset_sum(target_sum)
subset_sum_test(15 if len(sys.argv) < 2 else int(sys.argv[1]))
to top